January 11 Meeting and Talk

Our first CAA meeting of the new year will be held this Monday (Jan. 11) at 7:30 PM in the Rocky River Nature Center. Our guest speaker at 7:30 PM will be NASA scientist Dr. Geoffrey Landis, who will discuss NASA’s Innovative Advanced Concept (NIAC) program. Dr. Landis has presented several talks for our club and always has an interesting program. Our regular business meeting follows the presentation. Hope to see you there!

November 9 Membership Meeting, plus: “How Astronomy and Physics Collide at CERN”

Photo: Dr. Glenn D. Starkman. Credit: CWRU
Dr. Glenn D. Starkman
The Cuyahoga Astronomical Association (CAA) will have our monthly membership meeting this coming Monday (Nov. 9) at 7:30 PM in the Rocky River Nature Center.  Our speaker at 7:30 will be Dr. Glenn Starkman, professor of physics and astronomy at Case Western Reserve University.  His topic will be: “The Big Bang to the Milky Way: How Astronomy and Physics Collide at CERN.” Non-members are invited to attend this timely talk. As usual, the monthly general membership meeting will take place following the presentation. A Board Meeting will be held at 6:30 PM before our regular meeting. Board meetings are open to all CAA members.

NOTE: This will be the final membership meeting for 2015. In December the CAA organizes a members-only holiday gathering in place of a formal meeting.

Sun lights up day and night (some places) in early November

Photo: Train of Sunspots, November 4, 2105. Photo by James Guilford.
Train of Sunspots, November 4, 2015. Credit: James Guilford

An impressive train of sunspots has been making its way across the face of our nearest star this week. In the photo above: Designated AR2447 (small group to the left), AR2443 (bigger and darker, near center), and AR2445 (far right), the “Active Regions” have the potential of unleashing flares. In fact, AR2445 was the source of a flare that caused this week’s “northern lights” sighted across northern latitude locations around the world. Now rotating over the Sun’s limb, AR2445 won’t be aimed at Earth for a while — if ever again — but AR2443 has potential for high-energy flares.

Photo credit: James Guilford. Canon EOS 7D II: ISO 400, f/11, 1/1250 sec., 400mm lens with Astrozap film solar filter, heavily cropped, November 4, 2015.

Early galaxies may have helped shape the universe

Photo: Galaxy cluster and gravitational lensing. Credit: NASA/ESA
This image from the NASA/ESA Hubble Space Telescope shows the galaxy cluster MACSJ0717.5+3745. This is one of six being studied by the Hubble Frontier Fields programme, which together have produced the deepest images of gravitational lensing ever made. Due to the huge mass of the cluster it is bending the light of background objects, acting as a magnifying lens. It is one of the most massive galaxy clusters known, and it is also the largest known gravitational lens. Of all of the galaxy clusters known and measured, MACS J0717 lenses the largest area of the sky.


Observations by the NASA/ESA Hubble Space Telescope have taken advantage of gravitational lensing to reveal the largest sample of the faintest and earliest known galaxies in the Universe. Some of these galaxies formed just 600 million years after the Big Bang and are fainter than any other galaxy yet uncovered by Hubble. The team has determined, for the first time with some confidence, that these small galaxies were vital to creating the Universe that we see today.

An international team of astronomers, led by Hakim Atek of the Ecole Polytechnique Fédérale de Lausanne, Switzerland, has discovered over 250 tiny galaxies that existed only 600 to 900 million years after the Big Bang — one of the largest samples of dwarf galaxies yet to be discovered at these epochs. The light from these galaxies took over 12 billion years to reach the telescope, allowing the astronomers to look back in time when the universe was still very young.

Although impressive, the number of galaxies found at this early epoch is not the team’s only remarkable breakthrough, as Johan Richard from the Observatoire de Lyon, France, points out, “The faintest galaxies detected in these Hubble observations are fainter than any other yet uncovered in the deepest Hubble observations.”

By looking at the light coming from the galaxies the team discovered that the accumulated light emitted by these galaxies could have played a major role in one of the most mysterious periods of the Universe’s early history — the epoch of reionization. Reionization started when the thick fog of hydrogen gas that cloaked the early Universe began to clear. Ultraviolet light was now able to travel over larger distances without being blocked and the Universe became transparent to ultraviolet light.

By observing the ultraviolet light from the galaxies found in this study the astronomers were able to calculate whether these were in fact some of the galaxies involved in the process. The team determined, for the first time with some confidence, that the smallest and most abundant of the galaxies in the study could be the major actors in keeping the Universe transparent. By doing so, they have established that the epoch of reionization — which ends at the point when the Universe is fully transparent — came to a close about 700 million years after the Big Bang.

Lead author Atek explained, “If we took into account only the contributions from bright and massive galaxies, we found that these were insufficient to reionize the Universe. We also needed to add in the contribution of a more abundant population of faint dwarf galaxies.”

To make these discoveries, the team utilized the deepest images of gravitational lensing made so far in three galaxy clusters, which were taken as part of the Hubble Frontier Fields program. These clusters generate immense gravitational fields capable of magnifying the light from the faint galaxies that lie far behind the clusters themselves. This makes it possible to search for, and study, the first generation of galaxies in the Universe.

Jean-Paul Kneib, co-author of the study from the Ecole Polytechnique Fédérale de Lausanne, Switzerland, explains, “Clusters in the Frontier Fields act as powerful natural telescopes and unveil these faint dwarf galaxies that would otherwise be invisible.”

Co-author of the study Mathilde Jauzac, from Durham University, UK, and the University of KwaZulu-Natal, South Africa, remarks on the significance of the discovery and Hubble’s role in it,“Hubble remains unrivaled in its ability to observe the most distant galaxies. The sheer depth of the Hubble Frontier Field data guarantees a very precise understanding of the cluster magnification effect, allowing us to make discoveries like these.”