Visualization of colliding black holes

Robert Owen’s presentation at the CAA’s March 11 meeting featured a fascinating and beautiful animated simulation of what colliding black holes might look like if somehow viewed through a telescope. Watch the video here:

This computer simulation shows the collision of two black holes, a tremendously powerful event detected for the first time ever by the Laser Interferometer Gravitational-Wave Observatory, or LIGO. LIGO detected gravitational waves, or ripples in space and time generated as the black holes spiraled in toward each other, collided, and merged. This simulation shows how the merger would appear to our eyes if we could somehow travel in a spaceship for a closer look. It was created by solving equations from Albert Einstein’s general theory of relativity using the LIGO data.

The two merging black holes are each roughly 30 times the mass of the sun, with one slightly larger than the other. Time has been slowed down by a factor of about 100. The event took place 1.3 billion years ago.

The stars appear warped due to the incredibly strong gravity of the black holes. The black holes warp space and time, and this causes light from the stars to curve around the black holes in a process called gravitational lensing. The ring around the black holes, known as an Einstein ring, arises from the light of all the stars in a small region behind the holes, where gravitational lensing has smeared their images into a ring.

The gravitational waves themselves would not be seen by a human near the black holes and so do not show in this video, with one important exception. The gravitational waves that are traveling outward toward the small region behind the black holes disturb that region’s stellar images in the Einstein ring, causing them to slosh around, even long after the collision. The gravitational waves traveling in other directions cause weaker, and shorter-lived sloshing, everywhere outside the ring.

This simulation was created by the multi-university SXS (Simulating eXtreme Spacetimes) project. For more information, visit http://www.black-holes.org.

Advertisements
Posted in Uncategorized | Tagged , , , , | Leave a comment

March Membership Meeting

Robert Owen, Ph.D. - Oberlin College Photo

Robert Owen, Ph.D. – Oberlin College Photo

The March 2019 Membership Meeting of the Cuyahoga Astronomical Association will take place on Monday, March 11 beginning at 7:30 PM. The evening’s program, “Gravitational Waves from Colliding Black Holes,” will be presented by Rob Owen, Associate Professor of Physics and Astronomy, at Oberlin College.

Dr. Owen is a member of the Simulating Extreme Spacetimes collaboration (www.black-holes.org), which carries out supercomputer simulations of colliding black holes and neutron stars. Such simulations are essential for relating gravitational wave signals (such as those measured by the revolutionary LIGO observatory) to the astrophysical sources that produce them. In this talk he will describe the work and the often misunderstood physics of black holes and how they relate to the structure of space and time!

The CAA’s monthly meetings are held on the second Monday of every month (except December) at 7:30 PM at the Rocky River Nature Center; 24000 Valley Parkway; North Olmsted, Ohio, in the Cleveland Metroparks. Meeting programs are open to the public. Following the presentation and a brief social break, the club will conduct its membership business meeting.

Posted in Uncategorized | Tagged , , , , , , | Leave a comment

Mission’s end for “Oppy”

Opportunity's Tracks on Mars - Image credit: NASA/JPL-Caltech

Opportunity’s Tracks on Mars – Image credit: NASA/JPL-Caltech

February 12, 2019 — One of the most successful and enduring feats of interplanetary exploration, NASA’s Opportunity rover mission is at an end after almost 15 years exploring the surface of Mars and helping lay the groundwork for NASA’s return to the Red Planet.

The Opportunity rover stopped communicating with Earth when a severe Mars-wide dust storm blanketed its location in June 2018. After more than a thousand commands to restore contact, engineers in the Space Flight Operations Facility at NASA’s Jet Propulsion Laboratory (JPL) made their last attempt to revive Opportunity Tuesday, to no avail. The solar-powered rover’s final communication was received June 10.

“It is because of trailblazing missions such as Opportunity that there will come a day when our brave astronauts walk on the surface of Mars,” said NASA Administrator Jim Bridenstine. “And when that day arrives, some portion of that first footprint will be owned by the men and women of Opportunity, and a little rover that defied the odds and did so much in the name of exploration.”

Artist's Concept: Spirit & Opportunity Mars Rovers. Image Credit: NASA

Artist’s Concept: Spirit & Opportunity Mars Rovers. Image Credit: NASA

Designed to last just 90 Martian days and travel 1,100 yards (1,000 meters), Opportunity vastly surpassed all expectations in its endurance, scientific value and longevity. In addition to exceeding its life expectancy by 60 times, the rover traveled more than 28 miles (45 kilometers) by the time it reached its most appropriate final resting spot on Mars – “Perseverance Valley.”

“For more than a decade, Opportunity has been an icon in the field of planetary exploration, teaching us about Mars’ ancient past as a wet, potentially habitable planet, and revealing uncharted Martian landscapes,” said Thomas Zurbuchen, associate administrator for NASA’s Science Mission Directorate. “Whatever loss we feel now must be tempered with the knowledge that the legacy of Opportunity continues – both on the surface of Mars with the Curiosity rover and InSight lander – and in the clean rooms of JPL, where the upcoming Mars 2020 rover is taking shape.”

Click here for more on NASA’s Mars rovers!

Posted in Uncategorized | Tagged , , ,

“Looking for the Dark” at the CAA’s Monthly Membership Meeting: February 11

John Ruhl, Ph.D. Photo Credit: CWRU

John Ruhl, Ph.D. Photo Credit: CWRU

The Monday, February 11 meeting of the Cuyahoga Astronomical Association, will feature John Ruhl, Ph.D., Professor of Physics and Cosmology at Case Western Reserve University, as guest speaker. In his talk, “Looking for the Dark,” Dr.Ruhl will describe the latest findings from two new and unique projects designed to utilize gravity waves and the Cosmic Microwave Background (CMB) radiation to search for the mysterious Dark Energy that is causing our universe to expand!

Following the presentation and a brief social break, the club will conduct its membership business meeting.

The CAA’s monthly meetings are held on the second Monday of every month (except December) at 7:30 PM at the Rocky River Nature Center; 24000 Valley Parkway; North Olmsted, Ohio, in the Cleveland Metroparks. Meeting programs are open to the public,

Posted in Uncategorized | Tagged , , , ,

A fleeting moment in (astronomical) time

Image: ESO 1902a Credit: ESO

The faint, ephemeral glow emanating from the planetary nebula ESO 577-24 persists for only a short time  — around 10,000 years, a blink of an eye in astronomical terms. ESO’s Very Large Telescope captured this shell of glowing ionized gas — the last breath of the dying star whose simmering remains are visible at the heart of this image. As the gaseous shell of this planetary nebula expands and grows dimmer, it will slowly disappear from sight. An object much closer to home is also visible in this image — an asteroid wandering across the field of view has left a faint track below and to the left of the central star. And in the far distance behind the nebula a glittering host of background galaxies can be seen. Credit: ESO

 

An evanescent shell of glowing gas spreading into space — the planetary nebula ESO 577-24 —  dominates this image. This planetary nebula is the remains of a dead giant star that has thrown off its outer layers, leaving behind a small, intensely hot dwarf star. This diminished remnant will gradually cool and fade, living out its days as the mere ghost of a once-vast red giant star.

Red giants are stars at the end of their lives that have exhausted the hydrogen fuel in their cores and begun to contract under the crushing grip of gravity. As a red giant shrinks, the immense pressure reignites the core of the star, causing it to throw its outer layers into the void as a powerful stellar wind. The dying star’s incandescent core emits ultraviolet radiation intense enough to ionize these ejected layers and cause them to shine. The result is what we see as a planetary nebula — a final, fleeting testament to an ancient star at the end of its life.

This dazzling planetary nebula was discovered as part of the National Geographic Society  — Palomar Observatory Sky Survey in the 1950s, and was recorded in the Abell Catalogue of Planetary Nebulae in 1966. At around 1400 light years from Earth, the ghostly glow of ESO 577-24 is only visible through a powerful telescope. As the dwarf star cools, the nebula will continue to expand into space, slowly fading from view.

This image of ESO 577-24 was created as part of the ESO Cosmic Gems Programme, an initiative that produces images of interesting, intriguing, or visually attractive objects using ESO telescopes for the purposes of education and public outreach. The program makes use of telescope time that cannot be used for scientific observations; nevertheless, the data collected are made available to astronomers through the ESO Science Archive.

Posted in Uncategorized | Tagged , , , ,

January 20 – 21: Total Lunar Eclipse

Photo: Total Lunar Eclipse Sequence, February 2008

Total Lunar Eclipse Sequence, February 2008. – Images and Composite by Lynn Paul

Exciting News: A total lunar eclipse will take place January 20 – 21 and our area will be able to view the entire event, IF we are fortunate enough to have clear skies!

On the night of January 20, 2019 Earth’s shadow will cross the face of its Moon and viewers across North America will be treated to a total lunar eclipse. We, in Northeastern Ohio, are in luck this time as the entire eclipse will be visible to us given clear enough skies, of course.

Image: January 2019 Total Lunar Eclipse Timing - Credit: TimeAndDate.com

January 2019 Total Lunar Eclipse Timing – Credit: TimeAndDate.com

As the penumbral phase of the eclipse begins, at 9:36 PM, viewers will see the Full Moon gradually dimming, entering the lighter outer portion of Earth’s shadow. At 10:33 the partial eclipse begins and the disk of the Moon will show a dark, curved area expanding across its area. As the Moon moves deeper into shadow it will continue to darken until begin to glow a copper-red until at totality, 11:41 PM, Luna will hang colorfully in our star-sprinkled sky as totality begins — the time the Moon is fully within the darkest portion of Earth’s shadow, known as the umbra. Maximum eclipse is reached at 12:12 AM (Jan. 21) and totality ends at 12:43 AM.

As the eclipse ends, the process reverses until in the wee hours of Monday, the Full Moon will brightly shine again. Click here for more information from TimeAndDate.com.

NOTES: A telescope is not necessary for your enjoyment of this wondrous natural phenomenon, just go outside and look up! Binoculars or a small telescope may give a more detailed view but are not required. A lunar eclipse is completely safe to watch — it’s moonlight — so you need no special glasses or vision protection.

Posted in Uncategorized | Tagged , , , , ,

January 14 Meeting: New Horizons at Ultima Thule

Image: Artist's impression of the New Horizons spacecraft encountering a Kuiper Belt Object.

Artist’s impression of the New Horizons spacecraft encountering a Kuiper Belt Object. Credit: Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute (JHUAPL/SwRI)

Kai Getrost, CAA member and member of the NASA MU69 Occultation Team, will be program presenter at the January 14 meeting of the Cuyahoga Astronomical Association (CAA). Getrost will discuss the latest news about what we’ve learned, how we got there, and how he was involved in the mission on three science trips to South America.

This image taken by the Long-Range Reconnaissance Imager (LORRI) is the most detailed of Ultima Thule returned so far by the New Horizons spacecraft. It was taken at 5:01 Universal Time on January 1, 2019, just 30 minutes before closest approach from a range of 18,000 miles (28,000 kilometers), with an original scale of 730 feet (140 meters) per pixel. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

This image taken by the Long-Range Reconnaissance Imager (LORRI) is the most detailed of Ultima Thule returned so far by the New Horizons spacecraft. It was taken at 5:01 Universal Time on January 1, 2019, just 30 minutes before closest approach from a range of 18,000 miles (28,000 kilometers), with an original scale of 730 feet (140 meters) per pixel. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

The successful January 1 flyby of Kuiper Belt Object 2014 MU69/Ultima Thule came after extensive work by the scientists and technicians running the New Horizons mission. Largely unknown, invisible to the public, were efforts on the part of others to accurately locate the spacecraft’s target of opportunity subsequent to Pluto. Teams of astronomers were dispatched with portable telescopes and computers to observe and time occultations of stars by the invisible (it’s only about 20 miles long and is 4 billion miles away) target object; the exact location and improved orbital information of Ultima Thule was derived from those observations. Occultation refers to the moment the light from a distant star is blocked by an object nearer the observer.

The CAA’s monthly meetings are held on the second Monday of every month (except December) at 7:30 PM at the Rocky River Nature Center; 24000 Valley Parkway; North Olmsted, Ohio, in the Cleveland Metroparks. Meeting programs are open to the public.

Following the presentation and a brief social break, the club will conduct its membership business meeting.

Posted in Uncategorized | Tagged , , ,