Artist’s Concept: Nuclear Rocket at Mars. Credit: NASA
The Cuyahoga Astronomical Association (CAA) will host its monthly meeting at 7:30 PM, Monday, November 13 in the Cleveland Metroparks’ Rocky River Nature Center, North Olmsted. Our speaker, Dr. Stanley Borowski, a Senior Engineer at NASA’s Glenn Research Center, Cleveland, will discuss the use of nuclear rocket engines in space exploration. The program is free and open to the public, no reservations required.
Following the program, the club’s monthly membership meeting will convene.
This graphic shows the closest approaches of Cassini’s final two orbital phases. Ring-grazing orbits are shown in gray (at left); Grand Finale orbits are shown in blue. The orange line shows the spacecraft’s Sept. 2017 final plunge into Saturn. Image credit: NASA/JPL-Caltech
NASA’s Saturn-orbiting Cassini spacecraft has made its first close dive past the outer edges of Saturn’s rings since beginning its penultimate mission phase on Nov. 30.
Cassini crossed through the plane of Saturn’s rings on Dec. 4 at 8:09 AM EST at a distance of approximately 57,000 miles (91,000 kilometers) above Saturn’s cloud tops. This is the approximate location of a faint, dusty ring produced by the planet’s small moons Janus and Epimetheus, and just 6,800 miles (11,000 kilometers) from the center of Saturn’s F ring.
About an hour prior to the ring-plane crossing, the spacecraft performed a short burn of its main engine that lasted about six seconds. About 30 minutes later, as it approached the ring plane, Cassini closed its canopy-like engine cover as a protective measure.
“With this small adjustment to the spacecraft’s trajectory, we’re in excellent shape to make the most of this new phase of the mission,” said Earl Maize, Cassini project manager at NASA’s Jet Propulsion Laboratory, Pasadena, California.
A few hours after the ring-plane crossing, Cassini began a complete scan across the rings with its radio science experiment to study their structure in great detail.
“It’s taken years of planning, but now that we’re finally here, the whole Cassini team is excited to begin studying the data that come from these ring-grazing orbits,” said Linda Spilker, Cassini project scientist at JPL. “This is a remarkable time in what’s already been a thrilling journey.”
Cassini’s imaging cameras obtained views of Saturn about two days before crossing through the ring plane, but not near the time of closest approach. The focus of this first close pass was the engine maneuver and observations by Cassini’s other science instruments. Future dives past the rings will feature some of the mission’s best views of the outer regions of the rings and small, nearby moons.
Each of Cassini’s orbits for the remainder of the mission will last one week. The next pass by the rings’ outer edges is planned for Dec. 11. The ring-grazing orbits — 20 in all — will continue until April 22, when the last close flyby of Saturn’s moon Titan will reshape Cassini’s flight path. With that encounter, Cassini will leap over the rings, making the first of 22 plunges through the 1,500-mile-wide (2,400-kilometer) gap between Saturn and its innermost ring on April 26.
A dramatic, fresh impact crater dominates this false-color image taken by the High Resolution Imaging Science Experiment (HiRISE) camera on NASA’s Mars Reconnaissance Orbiter on Nov. 19, 2013.
NASA-JPL: Space rocks hitting Mars excavate fresh craters at a pace of more than 200 per year, but few new Mars scars pack as much visual punch as one seen in a NASA image released February 5, 2014.
The image from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA’s Mars Reconnaissance Orbiter shows a crater about 100 feet (30 meters) in diameter at the center of a radial burst painting the surface with a pattern of bright and dark tones. (See a high-resolution version of the image here.)
The scar appeared at some time between imaging of this location by the orbiter’s Context Camera in July 2010 and again in May 2012. Based on apparent changes between those before-and-after images at lower resolution, researchers used HiRISE to acquire this new image on Nov. 19, 2013. The impact that excavated this crater threw some material as far as 9.3 miles (15 kilometers).
The Mars Reconnaissance Orbiter Project is managed by NASA’s Jet Propulsion Laboratory, Pasadena, Calif., for NASA’s Science Mission Directorate, Washington. JPL is a division of the California Institute of Technology in Pasadena. HiRISE is operated by the University of Arizona, Tucson. The instrument was built by Ball Aerospace & Technologies Corp., Boulder, Colo. Malin Space Science Systems, San Diego, built and operates the Context Camera.
For more information about the Mars Reconnaissance Orbiter, which has been studying Mars from orbit since 2006, visit http://www.nasa.gov/mro .
For those in search of comet L4 PANSTARRS, look to the west after sunset in early and mid-March. This graphic shows the comet’s expected positions in the sky. Image credit: NASA
Comets visible to the naked eye are a rare delicacy in the celestial smorgasbord of objects in the nighttime sky. Scientists estimate that the opportunity to see one of these icy dirtballs advertising their cosmic presence so brilliantly they can be seen without the aid of a telescope or binoculars happens only once every five to 10 years. That said, there may be two naked-eye comets available for your viewing pleasure this year.
“You might have heard of a comet ISON, which may become a spectacular naked-eye comet later this fall,” said Amy Mainzer, the principal investigator of NASA’s NEOWISE mission at the Jet Propulsion Laboratory (JPL) in Pasadena, Calif., and self-described cosmic icy dirtball fan. “But if you have the right conditions you don’t have to wait for ISON. Within a few days, comet PANSTARRS will be making its appearance in the skies of the Northern Hemisphere just after twilight.”
Discovered in June 2011, comet 2011 L4 (PANSTARRS) bears the name of the telescopic survey that discovered it — the less than mellifluous sounding “Panoramic Survey Telescope and Rapid Response System” which sits atop the Haleakala volcano in Hawaii.
Since its discovery a year-and-a-half ago, observing comet PANSTARRS has been the exclusive dominion of comet aficionados in the Southern Hemisphere, but that is about to change. As the comet continues its well-understood and safe passage through the inner solar system, its celestial splendor will be lost to those in the Southern Hemisphere, but found by those up north.
“There is a catch to viewing comet PANSTARRS,” said Mainzer. “This one is not that bright and is going to be low on the western horizon, so you’ll need a relatively unobstructed view to the southwest at twilight and, of course, some good comet-watching weather.”
Well, there is one more issue — the time of day, or night, to view it.
“Look too early and the sky will be too bright,” said Rachel Stevenson, a NASA Postdoctoral Fellow at JPL. “Look too late, the comet will be too low and obstructed by the horizon. This comet has a relatively small window.”
By March 8, comet PANSTARRS may be viewable for those with a totally unobstructed view of the western horizon for about 15 minutes after twilight. On March 10, it will make its closest approach to the sun about 28 million miles (45 million kilometers) away. As it continues its nightly trek across the sky, the comet may get lost in the sun’s glare but should return and be visible to the naked eye by March 12. As time marches on in the month of March, the comet will begin to fade away slowly, becoming difficult to view (even with binoculars or small telescopes) by month’s end. The comet will appear as a bright point of light with its diffuse tail pointing nearly straight up from the horizon like an exclamation point.
What, if any, attraction does seeing a relatively dim naked-eye comet with the naked eye hold for someone who works with them every day, with file after file of high-resolution imagery spilling out on her computer workstation?
“You bet I’m going to go look at it!” said Mainzer. “Comet PANSTARRS may be a little bit of a challenge to find without a pair of binoculars, but there is something intimately satisfying to see it with your own two eyes. If you have a good viewing spot and good weather, it will be like the Sword of Gryffindor, it should present itself to anyone who is worthy.”
NASA detects, tracks and characterizes asteroids and comets passing relatively close to Earth using both ground- and space-based telescopes. The Near-Earth Object Observations Program, commonly called “Spaceguard,” discovers these objects, characterizes a subset of them, and predicts their paths to determine if any could be potentially hazardous to our planet.