The mystery of dimming Betelgeuse solved?

New observations by the NASA/ESA Hubble Space Telescope suggest that the unexpected dimming of the supergiant star Betelgeuse was most likely caused by a dust cloud that blocked starlight coming from the star’s surface. This artist’s impression was generated using an image of Betelgeuse from late 2019 taken with the SPHERE instrument on the European Southern Observatory’s Very Large Telescope. Credit: ESO, ESA/Hubble, M. Kornmesser

New observations by the NASA/ESA Hubble Space Telescope suggest that the unexpected dimming of the supergiant star Betelgeuse was most likely caused by an immense amount of hot material ejected into space, forming a dust cloud that blocked starlight coming from Betelgeuse’s surface.

Betelgeuse is an aging, red supergiant star that has swelled in size as a result of complex, evolving changes in the nuclear fusion processes in its core. The star is so large that if it replaced the Sun at the center of our Solar System, its outer surface would extend past the orbit of Jupiter. The unprecedented phenomenon of Betelgeuse’s great dimming, eventually noticeable to even the naked eye, began in October 2019. By mid-February 2020, the brightness of this monster star had dropped by more than a factor of three.

This sudden dimming has mystified astronomers, who sought to develop theories to account for the abrupt change. Thanks to new Hubble observations, a team of researchers now suggest that a dust cloud formed when superhot plasma was unleashed from an upwelling of a large convection cell on the star’s surface and passed through the hot atmosphere to the colder outer layers, where it cooled and formed dust. The resulting cloud blocked light from about a quarter of the star’s surface, beginning in late 2019. By April 2020, the star had returned to its normal brightness.

Several months of Hubble’s ultraviolet-light spectroscopic observations of Betelgeuse, beginning in January 2019, produced an insightful timeline leading up to the star’s dimming. These observations provided important new clues to the mechanism behind the dimming. Hubble saw dense, heated material moving through the star’s atmosphere in September, October, and November 2019. Then, in December, several ground-based telescopes observed the star decreasing in brightness in its southern hemisphere.

“With Hubble, we see the material as it left the star’s visible surface and moved out through the atmosphere, before the dust formed that caused the star appear to dim,” said lead researcher Andrea Dupree, associate director of The Center for Astrophysics | Harvard & Smithsonian. “We could see the effect of a dense, hot region in the southeast part of the star moving outward.”

“This material was two to four times more luminous than the star’s normal brightness,” she continued. “And then, about a month later, the southern hemisphere of Betelgeuse dimmed conspicuously as the star grew fainter. We think it is possible that a dark cloud resulted from the outflow that Hubble detected. Only Hubble gives us this evidence of what led up to the dimming.”

The team began using Hubble early last year to analyze the massive star. Their observations are part of a three-year Hubble study to monitor variations in the star’s outer atmosphere. The telescope’s sensitivity to ultraviolet light  allowed researchers to probe the layers above the star’s surface, which are so hot that they emit mostly in the ultraviolet region of the spectrum and are not seen in visible light. These layers are heated partly by the star’s turbulent convection cells bubbling up to the surface.

“Spatially resolving a stellar surface is only possible in favorable cases and only with the best available equipment,” said Klaus Strassmeier of the Leibniz Institute for Astrophysics Potsdam (AIP) in Germany. “In that respect, Betelgeuse and Hubble are made for each other.”

This is the first direct image of a star other than the Sun, made with the Hubble Space Telescope. Called Alpha Orionis, or Betelgeuse, it is a red supergiant star marking the shoulder of the winter constellation Orion the Hunter. The Hubble image reveals a huge ultraviolet atmosphere with a mysterious hot spot on the stellar behemoth’s surface. The enormous bright spot, which is many hundreds times the diameter of Sun, is at least 2,000 Kelvin degrees hotter than the surface of the star. Credit: Andrea Dupree (Harvard-Smithsonian CfA), Ronald Gilliland (STScI), NASA and ESA

Hubble spectra, taken in early and late 2019 and in 2020, probed the star’s outer atmosphere by measuring spectral lines of ionized magnesium. From September to November 2019, the researchers measured material passing from the star’s surface into its outer atmosphere. This hot, dense material continued to travel beyond Betelgeuse’s visible surface, reaching millions of kilometers from the star. At that distance, the material cooled down enough to form dust, the researchers said.

This interpretation is consistent with Hubble ultraviolet-light observations in February 2020, which showed that the behavior of the star’s outer atmosphere returned to normal, even though in visible light it was still dimming.

Although Dupree does not know the cause of the outburst, she thinks it was aided by the star’s pulsation cycle, which continued normally though the event, as recorded by visible-light observations. Strassmeier used an automated telescope of the Leibniz Institute for Astrophysics called STELLar Activity (STELLA)  to measure changes in the velocity of the gas on the star’s surface as it rose and fell during the pulsation cycle. The star was expanding in its cycle at the same time as the  convective cell was upwelling. The pulsation rippling outward from Betelgeuse may have helped propel the outflowing plasma through the atmosphere.

The red supergiant is destined to end its life in a supernova blast and some astronomers think the sudden dimming may be a pre-supernova event. The star is relatively nearby, about 725 light-years away, so the dimming event would have happened around the year 1300, as its light is just reaching Earth now.

Dupree and her collaborators will get another chance to observe the star with Hubble in late August or early September. Right now, Betelgeuse is in the daytime sky, too close to the Sun for Hubble observations.

Hubble’s latest portrait of the “Lord of the Rings”

NASA’s Hubble Space Telescope captured this image of Saturn on July 4, 2020. Two of Saturn’s icy moons are clearly visible in this exposure: Mimas at right, and Enceladus at bottom. This image is taken as part of the Outer Planets Atmospheres Legacy (OPAL) project. OPAL is helping scientists understand the atmospheric dynamics and evolution of our solar system’s gas giant planets. In Saturn’s case, astronomers continue tracking shifting weather patterns and storms. Credits: NASA, ESA, A. Simon (Goddard Space Flight Center), M.H. Wong (University of California, Berkeley), and the OPAL Team

Saturn is truly the lord of the rings in this latest portrait from NASA’s Hubble Space Telescope, captured on July 4, 2020, when the opulent giant world was 839 million miles from Earth. This new Saturn image was taken during summer in the planet’s northern hemisphere.

Hubble found a number of small atmospheric storms. These are transient features that appear to come and go with each yearly Hubble observation. The banding in the northern hemisphere remains pronounced as seen in Hubble’s 2019 observations, with several bands slightly changing color from year to year. The ringed planet’s atmosphere is mostly hydrogen and helium with traces of ammonia, methane, water vapor, and hydrocarbons that give it a yellowish-brown color.

Hubble photographed a slight reddish haze over the northern hemisphere in this color composite. This may be due to heating from increased sunlight, which could either change the atmospheric circulation or perhaps remove ices from aerosols in the atmosphere. Another theory is that the increased sunlight in the summer months is changing the amounts of photochemical haze produced. “It’s amazing that even over a few years, we’re seeing seasonal changes on Saturn,” said lead investigator Amy Simon of NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Conversely, the just-now-visible south pole has a blue hue, reflecting changes in Saturn’s winter hemisphere.

Hubble’s sharp view resolves the finely etched concentric ring structure. The rings are mostly made of pieces of ice, with sizes ranging from tiny grains to giant boulders. Just how and when the rings formed remains one of our solar system’s biggest mysteries. Conventional wisdom is that they are as old as the planet, over 4 billion years. But because the rings are so bright – like freshly fallen snow – a competing theory is that they may have formed during the age of the dinosaurs. Many astronomers agree that there is no satisfactory theory that explains how rings could have formed within just the past few hundred million years. “However, NASA’s Cassini spacecraft measurements of tiny grains raining into Saturn’s atmosphere suggest the rings can only last for 300 million more years, which is one of the arguments for a young age of the ring system,” said team member Michael Wong of the University of California, Berkeley.

Two of Saturn’s icy moons are clearly visible in this exposure: Mimas at right, and Enceladus at bottom.

This image is taken as part of the Outer Planets Atmospheres Legacy (OPAL) project. OPAL is helping scientists understand the atmospheric dynamics and evolution of our solar system’s gas giant planets. In Saturn’s case, astronomers continue tracking shifting weather patterns and storms.

Hubble Space Telescope at 30

Deep space image from Hubble Space Telescope
This image is one of the most photogenic examples of the many turbulent stellar nurseries the NASA/ESA Hubble Space Telescope has observed during its 30-year lifetime. The portrait features the giant nebula NGC 2014 and its neighbor NGC 2020 which together form part of a vast star-forming region in the Large Magellanic Cloud, a satellite galaxy of the Milky Way, approximately 163,000 light-years away. Credit: NASA, ESA, and STScI

Hubble Space Telescope provides a new portrait of Jupiter

Photo: Jupiter as imaged by the Hubble Space Telescope on June 27, 2019.
The NASA/ESA Hubble Space Telescope reveals the intricate, detailed beauty of Jupiter’s clouds in this new image taken on June 27, 2019 by Hubble’s Wide Field Camera 3, when the planet was 644 million kilometers from Earth — its closest distance this year. The image features the planet’s trademark Great Red Spot and a more intense color palette in the clouds swirling in the planet’s turbulent atmosphere than seen in previous years.
Credit: NASA, ESA, A. Simon (Goddard Space Flight Center), and M.H. Wong (University of California, Berkeley) Click here for full-size image!

Among the most striking features in the image are the rich colors of the clouds moving toward the Great Red Spot. This huge anticyclonic storm is roughly the diameter of Earth and is rolling counterclockwise between two bands of clouds that are moving in opposite directions toward it.

As with previous images of Jupiter taken by Hubble, and other observations from telescopes on the ground, the new image confirms that the huge storm which has raged on Jupiter’s surface for at least 150 years continues to shrink. The reason for this is still unknown so Hubble will continue to observe Jupiter in the hope that scientists will be able to solve this stormy riddle. Much smaller storms appear on Jupiter as white or brown ovals that can last as little as a few hours or stretch on for centuries.

The worm-shaped feature located south of the Great Red Spot is a cyclone, a vortex spinning in the opposite direction to that in which the Great Red Spot spins. Researchers have observed cyclones with a wide variety of different appearances across the planet. The two white oval features are anticyclones, similar to small versions of the Great Red Spot.

The Hubble image also highlights Jupiter’s distinct parallel cloud bands. These bands consist of air flowing in opposite directions at various latitudes. They are created by differences in the thickness and height of the ammonia ice clouds; the lighter bands rise higher and have thicker clouds than the darker bands. The different concentrations are kept separate by fast winds which can reach speeds of up to 650 kilometers per hour.

These observations of Jupiter form part of the Outer Planet Atmospheres Legacy (OPAL) program, which began in 2014. This initiative allows Hubble to dedicate time each year to observing the outer planets and provides scientists with access to a collection of maps, which helps them to understand not only the atmospheres of the giant planets in the Solar System, but also the atmosphere of our own planet and of the planets in other planetary systems.