This image shows Jupiter’s south pole, as seen by NASA’s Juno spacecraft from an altitude of 32,000 miles (52,000 kilometers). The oval features are cyclones, up to 600 miles (1,000 kilometers) in diameter. Multiple images taken with the JunoCam instrument on three separate orbits were combined to show all areas in daylight, enhanced color, and stereographic projection.
This illustration depicts NASA’s Juno spacecraft at Jupiter, with its solar arrays and main antenna pointed toward the distant sun and Earth. Image Credit: NASA/JPL-Caltech
NASA’s Juno mission, launched nearly five years ago, will soon reach its final destination: the most massive planet in our solar system, Jupiter. On the evening of July 4, at roughly 9 PM PDT (12 AM EDT, July 5), the spacecraft will complete a burn of its main engine, placing it in orbit around the king of planets.
During Juno’s orbit-insertion phase, or JOI, the spacecraft will perform a series of steps in preparation for a main engine burn that will guide it into orbit. At 9:16 PM EDT (July 4), Juno will begin to turn slowly away from the sun and toward its orbit-insertion attitude. Then 72 minutes later, it will make a faster turn into the orbit-insertion attitude.
At 10:41 PM EDT, Juno switches to its low-gain antenna. Fine-tune adjustments are then made to the spacecraft’s attitude. Twenty-two minutes before the main engine burn, at 10:56 PM, the spacecraft spins up from two to five revolutions per minute (RPM) to help stabilize it for the orbit insertion burn.
At 11:18 PM, Juno’s 35-minute main-engine burn will begin. This will slow it enough to be captured by the giant planet’s gravity. The burn will impart a mean change in velocity of 1,212 MPH (542 meters a second) on the spacecraft. It is performed in view of Earth, allowing its progress to be monitored by the mission teams at NASA’s Jet Propulsion Laboratory in Pasadena, California, and Lockheed Martin Space Systems in Denver, via signal reception by Deep Space Network (DSN) antennas in Goldstone, California, and Canberra, Australia.
After the main engine burn early July 5 (Eastern Daylight Time), Juno will be in orbit around Jupiter. The spacecraft will spin down from five to two RPM, turn back toward the sun, and ultimately transmit telemetry via its high-gain antenna. At Jupiter’s current distance of 536.9 million miles from Earth, radio signals will take about 48 minutes to reach the DSN.
Juno starts its tour of Jupiter in a 53.5-day orbit. The spacecraft saves fuel by executing a burn that places it in a capture orbit with a 53.5-day orbit instead of going directly for the 14-day orbit that will occur during the mission’s primary science collection period. The 14-day science orbit phase will begin after the final burn of the mission for Juno’s main engine on October 19.
JPL manages the Juno mission for NASA. The mission’s principal investigator is Scott Bolton of Southwest Research Institute in San Antonio. The mission is part of NASA’s New Frontiers Program, managed at the agency’s Marshall Space Flight Center in Huntsville, Alabama, for NASA’s Science Mission Directorate. Lockheed Martin Space Systems in Denver built the spacecraft.
Learn more about the June mission, and get an up-to-date schedule of events, at:
Mission Trailer Video: Secrets lie deep within Jupiter, shrouded in the solar system’s strongest magnetic field and most lethal radiation belts. On July 4, 2016, NASA’s Juno spacecraft will plunge into uncharted territory, entering orbit around the gas giant and passing closer than any spacecraft before. Juno will see Jupiter for what it really is, but first it must pass the trial of orbit insertion.
Launching from Earth in 2011, the Juno spacecraft will arrive at Jupiter in 2016 to study the giant planet from an elliptical, polar orbit. Image credit: NASA/JPL-Caltech
Launched from Earth in 2011, the Juno spacecraft will arrive at Jupiter on July 4, 2016 to study the giant planet from an elliptical, polar orbit. Juno will repeatedly dive between the planet and its intense belts of charged particle radiation, coming only 5,000 kilometers (about 3,000 miles) from the cloud tops at closest approach.
Juno’s primary goal is to improve our understanding of Jupiter’s formation and evolution. The spacecraft will spend a year investigating the planet’s origins, interior structure, deep atmosphere, and magnetosphere. Juno’s study of Jupiter will help us to understand the history of our own solar system and provide new insight into how planetary systems form and develop in our galaxy and beyond.
Juno’s principal investigator is Scott Bolton of Southwest Research Institute in San Antonio, Texas. NASA’s Jet Propulsion Laboratory in Pasadena, Calif., manages the mission. Lockheed Martin Space Systems of Denver, Colo., built the spacecraft. The Italian Space Agency, Rome, contributed an infrared spectrometer instrument and a portion of the radio science experiment.