Asteroid Hygiea could be classified as a dwarf planet

Image: Asteroid/Dwarf Planet Hygiea. Credit: ESO/P. Vernazza et al./MISTRAL algorithm (ONERA/CNRS)
A new SPHERE/VLT image of Hygiea, which could be the Solar System’s smallest dwarf planet yet. As an object in the main asteroid belt, Hygiea satisfies right away three of the four requirements to be classified as a dwarf planet: it orbits around the Sun, it is not a moon and, unlike a planet, it has not cleared the neighbourhood around its orbit. The final requirement is that it have enough mass that its own gravity pulls it into a roughly spherical shape. This is what VLT observations have now revealed about Hygiea. Credit: ESO/P. Vernazza et al./MISTRAL algorithm (ONERA/CNRS)

Astronomers using ESO’s SPHERE instrument at the Very Large Telescope (VLT) have revealed that the asteroid Hygiea could be classified as a dwarf planet. The object is the fourth largest in the asteroid belt after Ceres, Vesta and Pallas. For the first time, astronomers have observed Hygiea in sufficiently high resolution to study its surface and determine its shape and size. They found that Hygiea is spherical, potentially taking the crown from Ceres as the smallest dwarf planet in the Solar System.

As an object in the main asteroid belt, Hygiea satisfies right away three of the four requirements to be classified as a dwarf planet: it orbits around the Sun, it is not a moon and, unlike a planet, it has not cleared the neighborhood around its orbit. The final requirement is that it has enough mass for its own gravity to pull it into a roughly spherical shape. This is what VLT observations have now revealed about Hygiea.

“Thanks to the unique capability of the SPHERE instrument on the VLT, which is one of the most powerful imaging systems in the world, we could resolve Hygiea’s shape, which turns out to be nearly spherical,” says lead researcher Pierre Vernazza from the Laboratoire d’Astrophysique de Marseille in France. “Thanks to these images, Hygiea may be reclassified as a dwarf planet, so far the smallest in the Solar System.”

The team also used the SPHERE observations to constrain Hygiea’s size, putting its diameter at just over 430 km. Pluto, the most famous of dwarf planets, has a diameter close to 2,400 km, while Ceres is close to 950 km in size.

Surprisingly, the observations also revealed that Hygiea lacks the very large impact crater that scientists expected to see on its surface, the team report in the study published today in Nature Astronomy. Hygiea is the main member of one of the largest asteroid families, with close to 7,000 members that all originated from the same parent body. Astronomers expected the event that led to the formation of this numerous family to have left a large, deep mark on Hygiea.

“This result came as a real surprise as we were expecting the presence of a large impact basin, as is the case on Vesta,” says Vernazza. Although the astronomers observed Hygiea’s surface with a 95 percent coverage, they could only identify two unambiguous craters. “Neither of these two craters could have been caused by the impact that originated the Hygiea family of asteroids whose volume is comparable to that of a 100 km-sized object. They are too small,” explains study co-author Miroslav Brož of the Astronomical Institute of Charles University in Prague, Czech Republic.

The team decided to investigate further. Using numerical simulations, they deduced that Hygiea’s spherical shape and large family of asteroids are likely the result of a major head-on collision with a large projectile of diameter between 75 and 150 km. Their simulations show this violent impact, thought to have occurred about 2 billion years ago, completely shattered the parent body. Once the left-over pieces reassembled, they gave Hygiea its round shape and thousands of companion asteroids. “Such a collision between two large bodies in the asteroid belt is unique in the last 3–4 billion years,” says Pavel Ševeček, a PhD student at the Astronomical Institute of Charles University who also participated in the study.

Studying asteroids in detail has been possible thanks not only to advances in numerical computation, but also to more powerful telescopes. “Thanks to the VLT and the new generation adaptive-optics instrument SPHERE, we are now imaging main belt asteroids with unprecedented resolution, closing the gap between Earth-based and interplanetary mission observations,” Vernazza concludes.

Extrasolar star’s turbulent surface imaged

Image: Star π1 Gruis Credit: ESO
Astronomers using ESO’s Very Large Telescope have directly observed granulation patterns on the surface of a star outside the Solar System — the ageing red giant π1 Gruis. This remarkable new image from the PIONIER instrument reveals the convective cells that make up the surface of this huge star. Each cell covers more than a quarter of the star’s diameter and measures about 120 million kilometers across. Image Credit: ESO

Astronomers using ESO’s Very Large Telescope have for the first time directly observed granulation patterns on the surface of a star outside the Solar System — the ageing red giant π1 Gruis. This remarkable new image from the PIONIER instrument reveals the convective cells that make up the surface of this huge star, which has 700 times the diameter of the Sun. Each cell covers more than a quarter of the star’s diameter and measures about 120 million kilometers across. These new results are being published this week in the journal Nature.

Located 530 light-years from Earth in the constellation of Grus (The Crane), π1 Gruis is a cool red giant. It has about the same mass as our Sun, but is 700 times larger and several thousand times as bright. Our Sun will swell to become a similar red giant star in about five billion years.

An international team of astronomers led by Claudia Paladini (ESO) used the PIONIER instrument on European Southern Observatory’s (ESO’s) Very Large Telescope to observe π1 Gruis in greater detail than ever before. They found that the surface of this red giant has just a few convective cells, or granules, that are each about 120 million kilometers across — about a quarter of the star’s diameter. Just one of these granules would extend from the Sun to beyond Venus. The surfaces — known as photospheres — of many giant stars are obscured by dust, which hinders observations. However, in the case of π1 Gruis, although dust is present far from the star, it does not have a significant effect on the new infrared observations.

When π1 Gruis ran out of hydrogen to burn long ago, this ancient star ceased the first stage of its nuclear fusion program. It shrank as it ran out of energy, causing it to heat up to over 100 million degrees. These extreme temperatures fueled the star’s next phase as it began to fuse helium into heavier atoms such as carbon and oxygen. This intensely hot core then expelled the star’s outer layers, causing it to balloon to hundreds of times larger than its original size. The star we see today is a variable red giant. Until now, the surface of one of these stars has never before been imaged in detail.

By comparison, the Sun’s photosphere contains about two million convective cells, with typical diameters of just 1,500 kilometers. The vast size differences in the convective cells of these two stars can be explained in part by their varying surface gravities. π1 Gruis is just 1.5 times the mass of our Sun but much larger, resulting in a much lower surface gravity and just a few, extremely large, granules.

While stars more massive than eight solar masses end their lives in dramatic supernovae explosions, less massive stars like this one gradually expel their outer layers, resulting in beautiful planetary nebulae. Previous studies of π1 Gruis found a shell of material 0.9 light-years away from the central star, thought to have been ejected around 20,000 years ago. This relatively short period in a star’s life lasts just a few tens of thousands of years – compared to the overall lifetime of several billion – and these observations reveal a new method for probing this fleeting red giant phase.

ESO’s Very Large Telescope finds hottest and most massive touching double star

Image: Artist's impression of two contacting stars. Credit: ESO
This artist’s impression shows VFTS 352 — the hottest and most massive double star system to date where the two components are in contact and sharing material. The two stars in this extreme system lie about 160,000 light-years from Earth in the Large Magellanic Cloud. Credit: ESO/L. Calçada

ESO News Release

The double star system VFTS 352 is located about 160,000 light-years away in the Tarantula Nebula. This remarkable region is the most active nursery of new stars in the nearby universe and new observations from ESO’s VLT have revealed that this pair of young stars is among the most extreme and strangest yet found.

VFTS 352 is composed of two very hot, bright and massive stars that orbit each other in little more than a day. The centers of the stars are separated by just 12 million kilometers. In fact, the stars are so close that their surfaces overlap and a bridge has formed between them. VFTS 352 is not only the most massive known in this tiny class of “overcontact binaries” — it has a combined mass of about 57 times that of the Sun — but it also contains the hottest components — with surface temperatures above 40,000 degrees Celsius.

Extreme stars like the two components of VFTS 352, play a key role in the evolution of galaxies and are thought to be the main producers of elements such as oxygen. Such double stars are also linked to exotic behavior such as that shown by “vampire stars,” where a smaller companion star sucks matter from the surface of its larger neighbor.

In the case of VFTS 352, however, both stars in the system are of almost identical size. Material is, therefore, not sucked from one to another, but instead may be shared. The component stars of VFTS 352 are estimated to be sharing about 30 percent of their material.

Such a system is very rare because this phase in the life of the stars is short, making it difficult to catch them in the act. Because the stars are so close together, astronomers think that strong tidal forces lead to enhanced mixing of the material in the stellar interiors.

“The VFTS 352 is the best case yet found for a hot and massive double star that may show this kind of internal mixing,” explains lead author Leonardo A. Almeida of the University of São Paulo, Brazil. “As such it’s a fascinating and important discovery.”

Astronomers predict that VFTS 352 will face a cataclysmic fate in one of two ways. The first potential outcome is the merging of the two stars, which would likely produce a rapidly rotating, and possibly magnetic, gigantic single star. “If it keeps spinning rapidly it might end its life in one of the most energetic explosions in the universe, known as a long-duration gamma-ray burst,” says the lead scientist of the project, Hugues Sana, of the University of Leuven in Belgium.

The second possibility is explained by the lead theoretical astrophysicist in the team, Selma de Mink of University of Amsterdam: “If the stars are mixed well enough, they both remain compact and the VFTS 352 system may avoid merging. This would lead the objects down a new evolutionary path that is completely different from classic stellar evolution predictions. In the case of VFTS 352, the components would likely end their lives in supernova explosions, forming a close binary system of black holes. Such a remarkable object would be an intense source of gravitational waves.”

Proving the existence of this second evolutionary path would be an observational breakthrough in the field of stellar astrophysics. Regardless of how VFTS 352 meets its demise, this system has already provided astronomers with valuable new insights into the poorly understood evolutionary processes of massive overcontact binary star systems.